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Abstract

In the last 50 years, several studies have been performed on the measurement and prediction of hydrate
forming conditions for various gas mixtures and inhibitors. Yet, the correlations presented in the literature are
not accurate enough and consider most of the time, simple pure gases only and their mixtures. In addition, some
of these correlations are presented mainly in graphical form, thus making it difficult to use them within general
computer packages for simulation and design. The purpose of this paper is to present a comprehensive neural
network model for predicting hydrate formation conditions for various pure gases, gas mixtures, and different
inhibitors. The model was trained using 2387 input–output patterns collected from different reliable sources.
The predictions are compared to existing correlations and also to real experimental data. The neural network
model enables the user to accurately predict hydrate formation conditions for a given gas mixture, without
having to do costly experimental measurements. The relative importance of the temperature and the different
components in the mixture has also been investigated. Finally, the use of the new model in an integrated control
dosing system for preventing hydrate formation is discussed. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hydrate formation may be a common occurrence during oil and gas drilling and production
operations. Hydrates can form in surface production equipment and in the tubing of gas wells.
Experimental measurement of hydrate formation conditions for every specific gas composition is
impractical. Therefore, accurate prediction of the hydrate formation conditions is important in many
applications such as the determination of the limits to expansion of natural gas during throttling in
valves, chokes and restrictions.

Various correlations have been presented in the literature for predicting the hydrate formation
conditions. These correlations can be classified into five major methods.

0378-3812r98r$ - see front matter q 1998 Elsevier Science B.V. All rights reserved.
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The first is the K-value method, which utilizes the vapor–solid equilibrium constants for predicting
w xhydrate-forming conditions 1 . The method is based on the concept that hydrates are solid solutions.

The hydrate forming conditions are predicted from empirically estimated vapor–solid equilibrium
constants given by

K sy rx 1Ž .vs ,i i i

where y is the mole fraction of the ith hydrocarbon component in the gas phase considered on ai

water-free basis and x is the mole fraction of the same component in the solid phase on a water-freei

basis. The hydrate formation conditions should satisfy
n

y rK s1 2Ž .Ý i vs , i
is1

Inclusion of non-hydrocarbon gases such as CO , N and H S may cause inaccurate results. Mann et2 2 2
w xal. 2 presented new K-charts that cover a wide range of pressures and temperatures. These charts can

w xbe an alternate to the tentative charts constructed by Carson and Katz 1 , which are not a function of
structure or composition. The new charts are based on the statistical thermodynamic calculations.

w xThe second method is the gas–gravity plot developed by Katz 3 . The plot relates the hydrate
formation pressure and temperature with gas gravity defined as the apparent molecular weight of a gas
mixture divided by that of air. This method is a simple graphical technique that may be useful for an
initial estimate of hydrate formation conditions. The hydrate formation chart was generated from a
limited amount of experimental data and a more substantial amount of calculations based on the

w xK-value method. A statistical accuracy analysis reported by Sloan 4 , showed that this method is not
accurate. For the same gas gravity, different mixtures may lead to about 50% error in the predicted
pressure. Over the last 50 years, enormous experimental data on hydrate formation conditions have
been collected and hence a more accurate gas gravity chart can be developed. One purpose of this
study is to develop such chart as will be explained later.

The third method consists of empirical correlations developed according to the following form by
w x w xHolder et al. 5 and Makogon 6 for selected pure gases.

Psexp aqbrT 3Ž . Ž .
where a and b are empirical coefficients that depend on the temperature range for each gas. For
natural gas, another correlation was presented following a general equation based on the gas gravity

w xby Makogon 6 .

ln Ps2.3026bq0.1144 TqkT 2 4Ž . Ž .
where bs2.681–3.811 gq1.679 g 2 and ksy0.006q0.011 gq0.011 g 2.

w x w xBased on the fit to Katz 3 gas–gravity plot, Kobayashi et al. 7 developed the following
empirical equation for hydrate-forming conditions of natural gases.

2 32
Ts1r A qA ln g qA ln P qA ln g qA ln g ln P qA ln P qA ln gŽ . Ž . Ž .Ž . Ž . Ž . Ž .1 2 g 3 4 g 5 g 6 7 g

2 4 32 3qA ln g ln P qA ln g ln P qA ln P qA ln g qA ln g ln PŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .8 g 9 g 10 11 g 12 g

2 2 3 4qA ln g ln P qA ln g ln P qA ln P 5Ž . Ž . Ž . Ž .Ž . Ž .13 g 14 g 15
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where A s 2.7707715 = 10y3, A s y2.782238 = 10y3, A s y5.649288 = 10y4, A s1 2 3 4

y1.298593=10y3, A s1.407119=10y3, A s1.785744=10y4, A s1.130284=10y3, A s5 6 7 8

5.9728235=10y4, A sy2.3279181=10y4, A sy2.6840758=10y5, A s4.6610555=103,9 10 11

A s5.5542412=10y4, A sy1.4727765=10y5, A s1.3938082=10y5, A s1.4885010=12 13 14 15

10y6. The equation is not recommended for temperatures above 628F, pressures above 1500 psia, and
gas gravities above 0.9.

The fourth method involves the charts of permissible expansion that a natural gas can undergo
without risk of hydrate formation. These charts were redrawn with the aid of the gas gravity charts

w xusing the Joule–Thomson cooling curves 8 . This method is more suitable for rough design of valves,
chokes, and flow provers where gas expansion normally occurs downstream of these flow restrictions.
The charts are limited to natural gases composed predominantly of methane. An average error of 10%
should be expected with this method. Higher errors may result when significant amounts of
non-hydrocarbons or hydrocarbons heavier than ethane are present.

The fifth method is based on a statistical thermodynamic approach developed by van der Waals and
w xPlatteeuw 9 . This approach accounts for the interactions between water molecules forming the

w xcrystal lattice and gas molecules. It has been modified by many investigators 10–15 . Recent studies
w x16–21 have been done to validate the model for other constituents such as inhibitors and to improve
its predictive accuracy by modifying the involved parameters. Accuracy and limitations of this

w xmethod have been discussed by Sloan 22 . The method cannot predict accurately the gas hydrate
w xformation pressures in systems containing carbon dioxide and aqueous electrolyte solutions 23 . For

pure component systems excluding i-butane, an average error of 29% in pressure prediction can be
w xexpected. The error in predicting pressure for i-butane was 120% 24 . For multi-component systems,

an average error of 25% may be expected also in pressure prediction. The approach is not purely
theoretical and many fitted parameters are incorporated in it. In addition, the number and type of
phases should be known a priori before the statistical thermodynamic approach can furnish predic-
tions.

From the above discussion on the available models for predicting hydrate formation conditions, it
Ž .is clear that there is a research need for developing a new model. This model should 1 require the

Ž . Ž .least amount of input information, 2 give high accuracy, 3 be robust and less sensitive to noisy
Ž . Ž .input data, and 4 can be continuously retrained adapted to a new input–output information. Neural

network models offer all of the above desirable characteristics. There has been recently a resurgence
of interest in the use of artificial neural networks, mainly because of their ability to handle complex
and nonlinear problems. Artificial neural networks can be taught to learn correlative patterns between
variables and can subsequently be used to predict outputs from new inputs.

One of the main objectives of the present study was to develop a neural network model that can
predict the hydrate formation conditions for various pure gases, gas mixtures and various inhibitors.
The use of neural networks was shown recently to be successful in the accurate prediction of phase

w x w xequilibria 25 and for the prediction of PVT properties 26 . Various neural network models for the
prediction of hydrate formation conditions will be presented. The first model is a gravity model that
uses as its input variables the gas gravity and temperature and predicts the hydrate formation pressure.
Various other neural network models that are based on the gas composition are also considered. These
models consider pure hydrocarbon hydrate formers only, hydrocarbon and non-hydrocarbon hydrate
formers only, or all hydrocarbons, non-hydrocarbon, and hydrate inhibitors. The latter model is the
most general model. These models were trained using from 1012 to 2387 data points that are
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published in the research literature. The predictions of the neural network models are compared to the
available correlations and also to experimental data. The remainder of this paper will first give a brief
overview of artificial neural networks and then presents the design, training, testing and validation of
the various neural network models discussed previously. The testing and validation of the models
indicate that the use of neural networks is promising for the accurate prediction of hydrate formation
conditions for generalized gas systems. This apparent success leads us to discuss the integration of
such models with inhibitor dosing devices for accurate hydrate prevention and to minimize the cost of
inhibitors used.

2. Artificial neural networks

Neural networks are so named because they mimic the behavior of biological neurons and learn by
trial and error. Neural networks are first subjected to a set of training data consisting of input data
together with corresponding outputs. After a sufficient number of training iterations, the neural
network learns the patterns in the data fed to it and creates an internal model, which it uses to make
predictions for new inputs.

Ž . Ž .The foundation of an artificial neural network is the neuron or processing element PE Fig. 1 .
Ž w x.Each processing element i receives an input vector I I s I , I , . . . , I which is weighted withi i i1 i2 i n

Ž w x.a weight vector W W s W , W , . . . , W . The processing element then calculates an output O ,i i i1 i2 i n i

usually by using a sigmoidal function, which is a monatomic, continuously differentiable function,
i.e.,

1
O s f I s 6Ž . Ž .i i 1qexp yIŽ .i

The PEs are arranged in a special topology or architecture. There are several possible architectures
that can be used, however the most commonly used one is the multi-layer back-propagation

Fig. 1. A typical neuron i in the hidden layer.
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Ž .architecture Fig. 2 . This type of network contains a layer of input neurons, a layer of output neurons,
and one or several hidden layers of intermediate neurons. All the neurons are connected with different
weights. In addition, there is a bias neuron that is connected to each neuron in the hidden and output
layers. The input layer receives input from the outside world and processes them and transmits them
to the hidden layer. The output from a neuron in the hidden and the output layers is also given by Eq.
Ž .6 . In this case, the input I to a neuron in these layers is calculated from:i

I s W O qW O 7Ž .Ýi i j j iB Bž /
j

where the sum over j represents all neurons in the previous layer and O is an invariant output fromB

the bias neuron. The weight W represents the connection weight between neurons i and j and thei j

weight W is the connection weight between neuron i and the bias neuron.iB

The back-propagation neural network is applicable to a wide variety of problems and is the
predominant supervised training algorithm. The term ‘back-propagation’ indicates the method by
which the network is trained, and the term ‘supervised learning’ implies that the network is trained
through a set of available input–output patterns. The network is repeatedly exposed to these
input–output relationships and the weights among the neurons are continuously adjusted until the
network ‘learns’ the correct input–output behavior. Initially, all the weights are set randomly and the
difference or error between the desired and calculated outputs is calculated. This error is propagated
back through the network and is used to update the weights among neurons iteratively. This update

Fig. 2. A one hidden layer feed forward neural network.
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process is repeated for all patterns many times until the network becomes capable of reproducing the
input–output relationships to within an acceptable small tolerance.

The network depicted in Fig. 2 shows that in order to train the neural network, several weights
have to be adjusted. One might therefore suggest that given several parameters in the usual regression,
an accurate model could be prepared to predict the output from the given inputs. What is therefore the
advantage of using neural networks? ANNs have several advantages over statistical methods. First,
every node in the network encodes only a micro-feature of the network. That is, each node is not
totally responsible for mapping an output to given inputs. Only when the effect of all nodes is
combined, the network becomes able to predict an output corresponding to given inputs. Therefore, if
the value of one-input is slightly off, the performance of the network will still be acceptable.
However, in the usual empirical modeling, if the value of a variable is off, the model will usually
predict inaccurate results. Secondly, an ANN can be designed to continuously retrain itself and adjust
the connection weights among the neurons whenever it is subjected to a new input–output situation.
This flexibility resulting in a self-correcting model does not exist in the usual empirical modeling. A
third advantage of ANN modeling over statistical modeling is that an ANN can handle data consisting
of multiple inputs–multiple outputs, unlike empirical modeling where the model is restricted to
predicting only one output at a time. A last advantage of using ANNs, and probably the most
important one, is that the training does not require the specification of the forms of the correlating
functions. In the usual statistical regression, however, the user must specify the forms of the functions
governing the correlation among the data. This process is usually time-consuming and requires a lot
of physical insight. To prepare an ANN the only physical expertise needed is to decide what are the
important inputs and outputs of the system.

The inputs to the neural network depicted in Fig. 2 are the temperature and composition of the
hydrocarbons, non-hydrocarbons and inhibitors. It is not necessary to consider all of the above inputs
at once. For instance, the gravity can be used instead of gas composition. With this motivation in

Ž .mind, four ANN models models-A, -B, -C, and -D are considered depending on the input variables.
These models are discussed in detail below.

In model-A, the functional relationship is essentially based on the assumption that pressure P
depends on temperature T and specific gas gravity g , or

Ps f T ,g 8Ž . Ž .1

where g is determined from dividing the molecular weight for pure gas or apparent molecular weight
Ž . Ž .AMW for gas mixture by the AMW of air, i.e., gsAMWr28.9625 or gsÝ y M r28.9625. Thisi i

model has been tested for the pure hydrocarbon hydrate-formers; methane, propane, i-butane, and
n-butane and their mixtures in order to compare with Katz gravity charts.

In model-B, the correlation is expressed in terms of the composition of pure hydrocarbon
components and their mixtures, i.e.,

Ps f T , y , y , y , y , y 9Ž .Ž .2 C C C i -C n-C1 2 3 4 4

where y is the mol% of each component.
In model-C, the non-hydrocarbon hydrate-formers: carbon dioxide, nitrogen, and hydrogen sulfide

are also taken into account so that

Ps f T , y , y , y , y , y , y , y , y 10Ž .Ž .3 C C C i -C n-C CO N H S1 2 3 4 4 2 2
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ŽFinally in model-D, the hydrocarbon-non-hydrate-formers such as i-pentane, n-pentane lumped as
.pentane , and hexane plus; and the inhibitors including methanol, sodium chloride, ethylene glycol,

calcium chloride, and ethanol are collectively included to the previous model, i.e.,

Ps f T , y , y , y , y , y , y , y , y , y , y q , y , y , y , y , y 11Ž .Ž .4 C C C i -C n-C CO N H S C C MeOH EG EtOH NaCl CaCl1 2 3 4 4 2 2 5 6 2

In order to achieve appropriate computation stability during the learning phase of ANN, the domain
of input variation should be within the range of the used data. This was performed by the following
scaling rule:

T yTold old ,min
T s 12Ž .new T yTold ,max old ,min

Ž .where T and T are the maximum and minimum input values of previous or initialold,max old,min

variable, whereas T and T are the scaled values of old and new variables, respectively. Theold new
w xoutput variable was transformed by using the logarithmic rule 27 , i.e.,

P s ln P 13Ž . Ž .new

2.1. Data used

The hydrate phase–equilibrium data used in this study were mainly obtained from the comprehen-
w xsive book by Sloan 22 . The author provided a magnificent overview of the experimental data

available in the literature from 1934 to 1990. Additional data were also collected from other sources
w x18–21,23,28–30 . A total of 2389 data entries have been examined. The data were divided into

Ž .single, binary, ternary, and multi-component systems Table 1 . The experimental data on pure
Žhydrocarbon components include methane, ethane, propane, i-butane, and pentane lumped i-pentane

.and n-pentane . Heavier components including crude oil constituents are lumped in hexane plus.
Because of the lack of success in forming hydrates of pure n-butane, no reliable data were reported in
the literature for this component. Even the role of n-butane in multi-component hydrocarbon systems

w xwas not obvious 31 . However, the data available for gas mixtures containing n-butane were
considered. The pure non-hydrocarbon components involve carbon dioxide, nitrogen, and hydrogen

w xsulfide. The consistency of the data was examined by Sloan 22 and assessed in the present study for
the new data.

The phase equilibrium data for binary, ternary, and mixtures of these components were investi-
gated. Depending on the pressure and temperature of the system, the data represented one or more of

Table 1
Types of the gases and materials used in the correlations

Type Component

Hydrocarbon hydrate-formers C , C , C , i-C , n-C1 2 3 4 4

Non-hydrocarbon hydrate-formers CO , N, H S2 2
qHydrocarbon non-hydrate-formers i-C , n-C , C5 5 6

Inhibitors MeOH, EG, EtOH, NaCl, CaCl2
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Table 2
Range of the measured data

Parameter Minimum Maximum

Ž .Pressure kPa 42.0 397,000
Ž .Temperature K 148.8 320.1

Gravity 0.554 2.01
Ž .Condensates mol%

Pentane) 0.15 1.01
Hexane plus)) 0.05 78.74

Ž .Inhibitors wt.%
Methanol 5.0 73.7
Ethylene glycol 10.0 50.0
Ethanol 15.0 16.5
Sodium chloride 1.09 26.4
Calcium chloride 10.0 36.0

)Lumped i-pentane and n-pentane.
))Including n-octane and n-decane.

the following phase combinations: I–H–V, L –H–L , L –H–L –V, and L –H–L on thew hc w hc w hc

general equilibrium pressure–temperature line. Experimental data on the retrograde behavior for some
gas systems such as the binary hydrates of methane and propane were considered in the correlation. A

w xsimilar behavior was indicated by Sloan 22 for the methane–carbon dioxide system. The data on the
phase equilibria of various gas systems with inhibitors were also included. Data were collected for
inhibitors including methanol, ethylene glycol, ethanol, and common electrolytes such as the aqueous
solutions of sodium chloride and calcium chloride of various concentrations. The prohibitive effect of
crude oil existing in natural gas on hydrate formation has been considered in hexane plus. The ranges
of data utilized in this study are given in Table 2.

3. Results and discussion

In comparing the overall performance of the developed ANN models and the previous methods,
these methods will be presented in two groups. The first group comprises the correlations, which are
based on gas gravity of the hydrocarbon hydrate-formers. In this group, the ANN gravity model-A

w x w x w xwill be compared with the correlations suggested by Katz 3 , Holder et al. 5 , Makogon 6 , and
w xKobayashi et al. 7 . The second group includes the methods based on gas composition such as the

K-value approach and statistical thermodynamic model. Because the new charts of the K-value
w xmethod were based on the statistical thermodynamic model 2 , the compositional models developed

Ž .in the present study were compared only with the statistical thermodynamic model STM .

3.1. ANN graÕity model-A

In the first stage of this study an attempt was made to develop an ANN model for predicting
hydrate formation pressure in terms of gas gravity and temperature. This simplified correlation is
useful when the gas composition is not known. It is developed for more data than those used with the
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Table 3
Properties and statistical parameters of the neural network models

Model No. of input No. of data No. of No. of hidden AAPE SSE
variables entries neurons layers

ANN-A 2 1012 25 1 32.657 0.9770
ANN-B 9 1012 50 1 40.265 0.9521
ANN-C 11 1791 40 1 20.860 0.9864
ANN-D 16 2389 40 1 19.416 0.9794

w x w xKatz 3 correlation presented in the year 1945. In order to compare with Katz 3 gravity charts, the
model was trained by data for the pure hydrate-formers: C , C , C , i-C , and n-C , and their1 2 3 4 4

mixtures. Using 1012 input data entries, a correlation for ANN model-A was obtained with one
hidden layer and 25 neurons. As illustrated in Table 3, the model correlated the experimental data

Ž .with an average error of 32.657% and sum-squares error SSE of 0.977.
w xANN gravity model-A was used to prepare an analogous chart to that of Katz 3 . Fig. 3 shows the

hydrate formation conditions for various gas gravities: 0.554, 0.6, 0.7, 0.8, 0.9, and 1.0. While the
first three curves are monotonically decreasing with gravity over a wide range of temperature

Ž .variation, the latter three curves gG0.8 show a limited range of temperature due to the lack of data.
Ž .For gas gravities greater than 1.0, the corresponding curves not shown on the graph for simplicity ,

become closer and ambiguous. This ambiguity can be attributed in part to the lack of data over that
wide range of temperature shown in Fig. 3 and to the fact that using gravity only is not enough to
define the corresponding thermodynamic system.

Fig. 3. Gas gravity chart by ANN model-A.
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Fig. 4. Predictions by ANN gravity model-A and other correlations for 0.554 gas gravity.

Fig. 4 illustrates the hydrate formation pressures for an example gas gravity of 0.554. Results are
w xpresented as measured and calculated by ANN model-A and other methods including Holder et al. 5 ,

w x w x w xMakogon 6 , Katz 3 , and Kobayashi et al. 7 . The latter three methods were chosen because they
are mainly based on gravity graphical plots. As shown in Fig. 4, while the methods of Holder et al.

Fig. 5. Cross plot of ANN model-A.
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w x w x w x w x5 , Katz 3 and Kobayashi et al. 7 are accurate over a limited data range, the Makogon 6
correlation gave the least accuracy for the examined data. The ANN model-A provided reasonably
accurate results over a wide range of hydrate formation conditions.

The cross plot shown in Fig. 5, compares the measured hydrate formation pressure with that
predicted by ANN model-A. The data are presented for various phase equilibria of pure hydrocarbon
components and their mixtures. As can be seen, relatively little scatter is obtained around the 458-line.
This indicates a good agreement between the measured and calculated results.

3.2. ANN compositional models

In the next phase of this study, three ANN models were developed to consider the relationships
Ž . Ž .indicated in Eq. 9 through Eq. 11 . Several neural network architectures were attempted to find out

the best accuracy. A one-hidden layer network was found to be suitable. The number of neurons in
the hidden layer was varied until a minimum sum squared error was obtained. Table 3 demonstrates
the final neural network properties and statistical parameters of these models. The number of neurons
tabulated for the different models delivered acceptable results. They were justified by the correspond-

Ž .ing cross plot verifications Figs. 6–8 .
The ANN model-B was developed to include the composition of the hydrocarbon hydrate-formers

Ž .as indicated in Eq. 11 . The model showed lower average error and sum-squares error than those of
the ANN model-A. This may be due to the lack of data for pure n-butane, though data on its mixture

w xwith other components were available 31 . The model is capable to predict the hydrate formation
pressure, which fitted well the experimental pressure for the methane–ethane system at different
proportions as shown in Fig. 9.

Fig. 6. Prediction of hydrate formation conditions by ANN model-B for methane–ethane mixture.
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Fig. 7. Cross plot of ANN model-B.

3.3. Comparison of deÕeloped compositional ANN models

ANN model-D is the most comprehensive of the compositional models considered. The accuracy
Ž .of this model is checked against the other more specialized models Models-B and -C . These latter

Fig. 8. Cross plot of ANN model-C.
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Fig. 9. Cross plot of ANN model-D.

models were considered to facilitate comparisons with models available in the literature and also to
check whether or not more specialized models might lead to better accuracies than a generalized
model. Table 3 compares the statistical parameters for these models. The results show that the
comprehensive ANN model-D deliver a competitive correlation coefficient. For a total number of data
entries of 2387, this model gives an average absolute error of 19.4% and sum-squares error of 0.9794.

Ž .The cross plot of this model Fig. 9 confirms this fact.
To further check the accuracy of the generalized model-D compared to models-C and -D, a small

subset of the data was considered. In Table 4 the experimental hydrate-forming pressure is tabulated
against the pressure predicted by different compositional models for this data subset. The results
reveal that the ANN model-D fit is good and compares well with the other models. Therefore, it can
be concluded that the comprehensive ANN model-D can be generally used to predict the hydrate
formation pressure for all system compositions. The predictions of the statistical thermodynamic

Ž .model STM are also included in Table 4 for comparison purposes.
The new model can predict the hydrate formation conditions for gas systems existing in one or

more of the following phase regions: I–H–V, L –H–L , L –H–L –V, and L –H–L on thew hc w hc w hc

general equilibrium pressure–temperature plot. Contrary to the statistical thermodynamic model, the
developed model does not necessarily require a priori knowledge of the number and type of phases
before prediction.

3.4. Validation of the deÕeloped models

The validation of the new models was examined by using data that have not been considered in
their developments. Random samples of extra measured data points, which represent different phases
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Table 4
Calculations of hydrate formation pressure for methane–ethane system by various compositional models

Ž . Ž . Ž .Temp. K Composition mol% Pressure kPa

Methane Ethane Measured STM ANN model-B ANN model-C ANN model-D

Predicted APE Predicted APE Predicted APE Predicted APE

284 1.60 98.4 1810 1716 5.19 1810 0.131 1720 4.89 1720 5.13
286 1.60 98.4 2310 2249 2.64 2300 0.227 2360 2.36 2190 5.21
288 1.60 98.4 3080 3026 1.75 3400 10.4 3790 23.1 3240 5.12
279 4.70 95.3 990 924 6.67 1420 43.6 855 13.6 1180 19.0
283 4.70 95.3 1710 1508 11.81 1750 2.40 1490 13.2 1660 3.07
288 4.70 95.3 2990 2951 1.30 2560 14.3 3340 11.8 2520 15.6
282 17.7 82.3 1420 1385 2.46 1340 5.48 1350 4.68 1780 25.6
285 17.7 82.3 2140 1983 7.34 2200 2.73 2190 21.8 1840 14.2
287 17.7 82.3 3000 2545 15.17 8902 3.69 2990 0.339 3180 6.00
275 56.4 43.6 945 893 5.50 893 5.48 1290 36.4 946 0.0958
278 56.4 43.6 1290 1233 4.42 1360 5.69 1410 910 1290 0.0237
283 56.4 43.6 2430 2134 12.18 2280 6.34 1870 23.2 2230 8.46
304 80.9 19.1 68,600 34,451 49.78 73,300 6.93 10,100 43.9 8080 15.4
296 80.9 19.1 23,500 20,994 10.66 21,800 6.98 34,500 3.16 33,600 5.62
289 80.9 19.1 7000 6870 1.86 8700 24.3 64,900 5.33 79,600 16.0
275 90.4 9.60 1520 1913 25.86 1660 8.81 2710 77.9 1980 29.6
280 90.4 9.60 2890 3214 11.21 2760 4.43 3650 26.2 3020 4.40
283 90.4 9.60 3970 4447 12.02 3880 2.02 4650 17.3 3950 0.445
275 95.0 5.00 1840 2345 27.45 2100 14.1 1820 1.20 2140 16.1
278 95.0 5.00 2530 3174 25.45 2600 2.79 2290 9.50 2640 4.28
283 95.0 5.00 4770 5365 12.47 4900 2.74 4320 9.40 4580 3.98
275 97.1 2.90 2160 2623 21.44 2380 10.3 2230 3.45 2460 13.8
278 97.1 2.90 2960 3535 19.43 2920 1.24 2830 4.17 3040 2.89
280 97.1 2.90 4030 4329 7.42 3870 4.17 3810 5.63 3940 2.29
275 97.8 2.20 2370 2732 15.27 2480 4.96 2440 3.18 2600 9.73
280 97.8 2.20 4410 4495 1.93 4010 9.02 4120 6.74 4170 5.51
283 97.8 2.20 6090 6138 0.79 5630 7.46 5800 4.68 5650 7.12
275 98.8 1.20 2860 2907 1.64 2650 7.49 2740 4.19 2820 1.60
278 98.8 1.20 3810 3894 2.20 3240 15.0 3420 10.2 3490 8.32
280 98.8 1.20 5090 4753 6.62 4270 16.1 4500 11.6 4520 11.2

10.998 4.53 7.14 4.83Average absolute percent errors

of hydrate equilibria, were used to test the accuracy of models. Results were compared to those of the
available correlations.

Table 5 illustrates the statistical accuracy parameters obtained by models-A and -B compared with
Ž . w xthose for the statistical thermodynamic model STM , modified by Paranjpe et al. 15 and Makogon

w x w x6 empirical correlation. Data were taken from Paranjpe et al. 15 and chosen within the range of
applicability of the latter models, i.e., between 233 and 300 K, and pressures up to 27 MPa. Katz
correlation was not included in the comparison because the gas gravity used here was out of its
application range. The results show that the ANN models fit, well the cross validation experimental
data and are superior to the other models.
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Table 5
Comparison of hydrate formation pressure predicted by various correlations

Ž .Temp. Mol% Mixture Pressure kPa
Ž .K gravityPropane i-butane Exp. STM APE ANN-A APE ANN-B APE Makogon APE

277 47.5 52.5 1.7768 355 302 14.929 4.16 17.2 370 4.23 2680 655.7
277 48.8 51.2 1.7705 365 311 14.79 3.72 1.91 386 5.75 2600 612.2
277 65.3 34.7 1.6906 426 375 11.97 3.48 18.4 505 18.5 1790 319.5
278 79.4 20.6 1.6223 490 469 4.29 3.93 19.7 463 5.51 1580 221.6

11.495 14.30 8.51 452.2Average absolute percent error

The validity of the comprehensive ANN model-D was tested on two example systems. The first
was the inhibition of hydrate formation of the methane–propane system by methanol. Data were

w xcollected from Ng and Robinson 12 . As shown in Fig. 10, the model correlated the experimental
data with an average absolute error of 15.8%. The second example was on the sodium chloride

w xinhibition of methane hydrates. Experimental data were taken from Sloan 22 . The comprehensive
model fitted well the measured data, as indicated in Fig. 11. It gave an average error of 6.03%.

3.5. RelatiÕe importance of temperature and gas components in the formation of hydrates

In order to check the effect of the various gas components and also the temperature on the hydrate
w xformation pressure, the partition method proposed by Garson 32 was employed. The general

compositional model-D was used for this purpose because it takes into account the interactions among

Fig. 10. Methanol inhibition of methane–propane hydrates.
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Fig. 11. NaCl inhibition of methane hydrates.

all the considered components in the hydrate formation system. The connection weights in the ANN
architecture were used to assess the desired relative importance of the variables. The importance of

w xeach variable as proposed by Garson 32 is given by the following formula:
n nh P

< < < < < <I r I OÝ ÝP P jj j,kž /
js1 ks1

IM x s 14Ž . Ž .P n n nP P P

< < < < < <I r I OÝ Ý ÝP P ji , j i , j ,kž /ž /
is1 js1 ks1

Ž .where IM x is the importance measure for the P th input variable x . n is the number of inputP P P
< <variables, and n is the number of neurons in the hidden layer. The term I is the absolute value ofPh j

the weight in the neural network corresponding to the P th input variable and the j hidden layer, and
< <the term O is the absolute value of the output layer weight corresponding to the jth hidden layer.j

The formula essentially calculates the relative share of the output prediction associated with each
input variable. The results of this calculation are given in the last row of Table 6. These results
indicate that the composition of the different components play a great role in the hydrate formation.
Methane has the biggest share, followed by propane, butane and ethane. It is interesting to note that
the non-hydrocarbon components CO and N have also a significant importance in hydrate2 2

formation. Of the different inhibitors that can be used, methanol and NaCl seem to have the biggest
inhibition role. The table indicates also that n-butane is comparable in importance with i-butane.
Earlier studies did not indicate the significance of this component in hydrate formation.

The effect of temperature on hydrate formation conditions seems to be of less importance than
composition. To check this further, the partition procedure was applied on the ANN gravity model-A
to assess the importance of temperature against gravity, which reflects the gross gas composition. The
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Table 6
Relative importance of the various inputs in the general compositional model

Ž .Input Relative importance %

T 14.1
C 11.21

C 7.852

C 8.963

i-C 4.964

n-C 4.194

C 5.515
qC 3.926

CO 6.302

N 6.362

H S 4.902

MeOH 8.48
Nacl 6.21
EG 3.71
CaCl 2.202

EtOH 1.45

results showed that temperature has a relative importance of 42% while gravity has a bigger share of
58%.

3.6. Integration with a dosing control system

Hydrate formation control should be considered to be an on-line service activity. The formation of
hydrates can be avoided by introducing computerized systems along with monitoring instruments and
on-line data collection. The objective is to formulate prompt and reliable remedial actions by injecting
the appropriate amount of inhibitor for the measured temperature and pressure of the system. This
type of ‘modern strategy’ for inhibition will minimize the cost of chemicals used for inhibition of
hydrate formation, and maximize systems effectiveness.

In order to determine the required amount of an inhibitor to avoid the formation of hydrates within
Ž .a system, the comprehensive compositional neural network model Model-D presented in this paper

can be used. This can be done by invoking a valuable property of a neural network: the ability to
Ž .solve the inverse problem of determining the amount of an inhibitor for instance that will lead to no

hydrate formation at the current temperature, pressure and composition of other components. Thus,
one can envision the proposed neural network model-D to be integrated within a generalized inhibitor
control system consisting of monitoring instrumentation and on-line data collections. The study of
such integration will be the subject of further research.

4. Concluding remarks

Utilization of the neural network technique for predicting the hydrate formation conditions has
been investigated in the present study. The technique has been applied on a total of 2387 experimental
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data sets obtained for phase equilibrium of pure, binary, and multi-component systems. These systems
were composed of hydrate-forming and non-hydrate-forming constituents with and without inhibitors.
Various types of inhibitors commonly used in petroleum industry were tested. Based on the results
obtained, the following conclusions can be drawn.

Ž .1 Several neural network architectures have been investigated to achieve the highest accuracy.
One hidden layer network, with 25 neurons in the hidden layer showed reasonably accurate results for

Ž .the gravity model. A similar network, with 40 or 50 neurons in the hidden layer, was found to yield
the least error for the compositional models.

Ž .2 A new neural network model based on gas gravity has been developed. The model utilizes the
updated experimental data on hydrate formation conditions. It achieved better accuracy when
compared with the existing gravity-graphic method and empirical correlations. However, for gas
gravities between 0.8 and 1.0, the model was valid for a limited range of available data. For gravities
G1.0, the gravity neural network model showed ambiguous results. This ambiguity may be due to
lack of experimental data, and that the use of gravity only in correlation is not sufficient.

Ž .3 The developed compositional neural network models are simple empirical relationships that can
predict hydrate formation pressure as a function of temperature and composition. These models
delivered satisfactorily accurate results in comparison with the available correlations and models. The
models require much less input information when compared with the previous models. The STM for
instance, requires the knowledge of the number and type of phases before it can furnish predictions.
These input data are not needed for the new models.

Ž .4 Finally, because of the lack of sufficient experimental data especially for some binary and
multi-component hydrate systems, the developed models have to be updated by being retrained by
using extra collected data.

5. List of symbols

Ž .A , A , . . . , A empirical coefficients in Eq. 51 1 15

AAPE average absolute percent error
APE absolute percent error

Ž .a, b empirical coefficients in Eq. 3
I input received by the processing element ii

Ž .IM x importance measure of the input variable xP P
< <I absolute weight corresponding to P th input variable and jth layerPj

K vapor–solid equilibrium ratio of component i, dimensionlessvs,i
Ž .k empirical coefficient in Eq. 4

n number of neurons in the hidden layerh

n number of input variablesP

O output calculated by the processing element ii

O output calculated from neuron in the previous layerj

O invariant output from the bias neuronB
< <O absolute output weight corresponding to the jth hidden layerj

P pressure, Pa
SSE sum-squares error
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T temperature, K
W weight vector of the input received by the processing element ii

W connection weight between neurons i and ji j

W connection weight between neuron i and the bias neuron BiB

x mole fraction of component i in the hydrate phase, dimensionlessi

y mole fraction of component i in the vapor phase, dimensionlessi
Ž .b empirical coefficient in Eq. 4

g gas gravity, dimensionless
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